
Percolation transition in the Bose gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 4689

(http://iopscience.iop.org/0305-4470/26/18/031)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 46894710. Printed in the UK 

Percolation transition in the Bose gas 
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Received 22 January 1993, in final form 27 May 1993 

Abstract. The canonical partition function of a Bose gas gives rise to a probability disaibution 
over the permutations of N particles. We study the probability and mean value of the cycle 
lengths in the cyclic permutations, their relation to physical quantities like pair correlations, and 
their thermodynamic limit. We show that in the ground state of most interacting boson gases 
the mean cycle length diverges in the bulk limit and the particles form macroswpic cycles. In 
the free Bose gas Bose-Einstein condensation is accompanied by a percolation tiansition: the 
appearance of infinite cycles with non-vanishing probability. 

1. Introduction 

This paper presents a new approach to phase transitions in bosonic systems. Since this 
description emerges somewhat accidentally from a study of the ferromagnetism in the 
Hubbard model, it may be interesting to outline the sequence of ideas connecting these 
seemingly distant fields. 

The magnetization per particle in the Hubbard model (in fact, in any model of spin-; 
fermions) can be written (Aizenman and Lieb 1990, Siitd 1991, 1992a) as 

1 &,1((1/W Cj Pj tanh tpjDh)dplA[pl nj(2cosh fPjSh) 
M(h) = - ---.(1.1) 

Equation (1.1) and formulae (1.4) and (1.6) will be derived in full generality in section 3. 
Here we concentrate on the structure of the above expression. The summations run over 
the partitions [ p ]  of N ,  the number of particles, 

2 C[pl € [ ~ l A b l  nj(2cosh $PjBh) 

pi > p z > . . . > ) l  p l + ~ z + . . . = N .  (1.2) 

~ [ p ]  = (-l)E(pJ-’), h is the external field, ,!? is the inverse temperature and A[p] (see 
equation (2.14)) is independent of h. Each partition corresponds to a conjugacy class of the 
group S, of permutations of N elements and fixes the cycle len,* of the permutations 
within the class (Ludwig and Falter 1988). One observes that the magnetization is a rational 
function of tanh $?h, which can be expanded to give 

m 

M(h) = x a , ( t a n h  f,!3h)2”t’. 
“=O 

t Permanent address: Central Research Institute for Physics, Budapest, Hungary. 
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The zero-field magnetic susceptibility x reads 

where k [ p l  is the number of elements of the partition [ p ] .  This is similar to a mean 
value of the cycle lengths: the first average is taken with the weights pj/N, the second is 
the thermodynamic average. Let S ( x )  denote the spin operator at the site x ,  Sz(x) its z 
component and S the operator of the total spin. Then the fiuctuation-dissipation formula 

when compared with (1.4) shows that there is a ferromagnetic long-range order if and 
only if the average cycle length grows proportionally to the number of electrons when the 
thermodynamic l i t  is taken. 

Spin correlations in a zero field are also locally connected to the cyclic permutations. 
For x # Y, 

(cf equation (3.23)). In this formula HN is the N-particle Hamiltonian and 

1x1,. .. . X N )  ="xi) 

g denotes a permutation of 1,2, . . . , N, E(g)  is the signature and k ( g )  is the number of 
disjoint cycles of g, and e is the unit of SN. The primed sum goes over (XI, . . . , X N )  such 
that xi = x and xj = y for a single pair (i, j), where i and j are in the same cycle of g. 
The remarkable fact about this formula is that the numerator is p& of the sum constituting 
the denominator. Were E & )  not there, we could interpret the ratio as the probability of 
finding a configuration ( x i )  and a permutation g such that x and y are singly occupied and 
the two particles belong to the same cycle of g. Long-range ferromagnetic order would then 
mean that spatially extended cycles have a non-vanishing probability. This interpretation 
becomes possible if we drop E & ) .  This makes (1.4) turn into a true mean value and (1.6) 
into a true probability. The system is now a boson gas with a two-valued internal degree 
of freedom. If we replace the numbers 1/4, 3/4 and 2 respectively by s(s + 1)/3, s(s + 1) 
and 2s + 1, we obtain the susceptibility and pair correlation of a spin-s boson gas. As a 
final step, we divide the two equations by s and then set s = 0. The right-hand side of the 
first is still the mean value of the cycle lengths, that of the second is still the probability 
quoted above. The obvious physical meaning of the left-hand sides has been lost; however, 
they must refer to some thermodynamic properties of the spinless boson gas. 

One observes that ( ( p i ) )  takes on values between 1 and N. At high temperatures and/or 
low densities ( ( p i ) )  must be of the order of 1 as N and V increase. This is at least clear for 
the Bose gas with spin, where in the opposite case we would get non- or slowly decaying 
magnetic correlations at arbitrarily high temperatures or low densities. The boundedness of 
( ( p i ) )  implies that, in the thermodynamic limit, all the cycles are finite with full probability. 
This may not be the case at low temperatures and/or high densities. If a transition occurs it 
will be a percolation transition in the sense that infinite cycles appear with positive density. 
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This has thermodynamic consequences through the divergence of the response function 
( ( P i ) ) .  

The aim of this paper is to make these ideas mathematically more precise. In section 2 
we define a probability distribution PV,N over the symmetric group SN by using the canonical 
partition function of a system of N bosons in a volume V. Associated with the cyclic 
permutations in which any permutation g can be decomposed, we introduce two sets of 
random variables: U&), the number of cycles of length k and &(g), the length 01 the cycle 
containing the number i .  The mean value of the iirst and the probability distribution of 
the second are related by a simple expression. Section 3, supplemented by an appendix, 
contains the derivation of the formulae (l.l),  (1.4) and (1.6) in full generality for tiosons and 
fermions. In particular, for the magnetic Bose gas the expectation value Ev,N(&) proves to 
be the zero-field susceptibility while in the non-magnetic case it is related to some special 
kind of density-density correlation functions. In section 4 we sketch the problem of the 
thermodynamic limit of the probability distribution introduced in section 2, and give the 
definition of what we call the cycle percolation. Sections 5 and 6 present examples. 

In section 5 we study ~ P V J  at zero temperature for the interacting Bose gas. We show 
that if the overall ground state of the Hamiltonian in the spinless Hilbert space (without Bose 
or Fermi statistics) is unique, the corresponding Bose gas exhibits cycle percolation in the 
ground state: Ev,N(&)  grows proportionally to N and the probability of cycle percolation is 
1. This clearly shows the interest in this quantity: being zero at high temperature and 1 in 
the ground state, it is a good candidate for an order parameter. Notice, in contradistinction, 
that the non-vanishing of the off-diagonal long-range order (ODLRO, Yang 1962) in the 
ground state of an interacting Bose gas is apparently no easier to establish than to show 
Bose condensation at positive temperatures. As a rare example, recently Penrose (1991) 
proved ODLRO for the hard-core Bose gas on the complete graph, a model solved earlier by 
T6th (1990). 

The prerequisite to ground-state cycle percolation, the uniqueness of the overall ground 
state in finite volumes, generally holds true, for example, in two and higher dimensions 
for pair interactions which are bounded from below everywhere and from above outside 
the origin or a hard core. (For hard-core interactions the density must be smaller than 
the close-packing value.) Strictly speaking, this is proved only for the Dirichlet boundary 
condition on an arbitrary connected domain. Relevant results are due to Krein and Rutman 
(1962, theorem 6.3), Glimm and Jaffe (1981, section 3.3), Faris (1972), Faris and Simon 
(1975) and Simon (1979, theorem 21.1). Uniqueness is probably also true for periodic and 
Neumann boundary conditions on rectangular domains where the proof is immediate for 
non-interacting particles. Natural counterexamples for the uniqueness of the ground state 
are provided by one-dimensional systems with hard-core or other pair interactions which 
are repulsive and non-integrable at the origin. Such interactions cut the phase space into 
N! disconnected parts ( ( N  - l)! if the boundary condition is periodic) so that there are N! 
linearly independent ground states. In the corresponding Fermi or Bose gas the exchange is 
completely prohibited at any temperature including zero.each particle forms a 1-cycle in 
itself, the fermion and boson partition functions coincide. So there is no cycle percolation 
and, indeed, no Bose condensation in the case of attractive walls (Buffet and Pule 1985, 
de Smedt 1986), although these latter give rise to condensation in the one-dimemional free 
Bose gas (Robinson 1976). Notice that the uniqueness condition replaces the absence of 
long-range order which was argued to be necessary for ODLRO in the ground state @'enrose 
and Onsager 1956). 

In section 6 we show that in the free Bose gas BossEinstein condensation calls forth the 
percolation transition. In this case the probabilities Pv& = k )  can be obtained explicitly 
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and their asymptotic behaviour for different boundary conditions can be studied. This and 
other details will be published separately (Siita 1993). 

Let us finish this introduction with several remarks. 
A purely quantum mechanical phase transition in the Bose gas, that is a phase transition 

which is entirely due to Bose statistics, is driven by the exchange interaction. Exchange acts 
among particles which are cyclicly permuted. If Ev,,&) remains finite, the symmetrization 
plays a minor role and Boltzmann statistics would give a qualitatively correct description. 
It is only when E V , N ( f i )  diverges that Bose statistics becomes relevant. Therefore, the 
divergence of E v , N ( ~ ; )  with increasing N and V is probably the most general criterion 
of such a phase transition: more general than ODLRO and even more general than cycle 
percolation. (Take, for instance, Pv,N(& = n) = aN/n2 with normalizing factor aN, then 
Ev,N(&)  FZ UN In N diverges but 

m m 

lim PV,N(fi = n) = 6/~’c l/nZ = 1 
*=l N+m “=I 

and, hence, there is no cycle percolation, see section 4.) On the other hand, ODLRO implies 
cycle percolation in the free Bose gas and probably also in interacting systems. The 
importance of long cycles in the A-transition in liquid helium had already been observed by 
Feymnan (1953), Penrose and Onsager (1956). If the mean cycle length diverges slowly 
(more slowly than N), there may occur a phase transition analogous to the Kosterlitz- 
Thouless transition, with or without ODLRO and cycle percolation. 

Random walks in connection with path-integral representations of the partition function 
are realizations of the cyclic permutations in ‘spacetime’. It is in these terms that Feynman 
(1953) described the &transition in liquid helium. Closely related ideas appear in recent 
works, mainly in connection with the quantum Heisenberg model (Codon and Solovej 
1991), in particular in attempts to describe the ground state of the two-dimensional 
antiferromagnet (Mielke 1992) or the phase transition in the three-dimensional spin-; 
ferromagnet (T6th 1993). In the set-up of the present paper random walks have no 
conceptual importance, their introduction can be avoided. 

It is interesting to point out the role of the spins in the above description. While spins 
are not thought to modify the nature of the phase transition, their presence is useful, as they 
are the most natural markers of the cycles. 

A preliminary version of this work was presented at the 18th IUPAF’ Conference on 
Statistical Physics (Siita 1992b). 

2. Probability distribution over permutations 

The canonical partition function of a system of N bosons confined in a volume V can be 
written as 

With some abuse of notation, V will be used to denote both the domain and the volume (the 
set of sites and their number in the lattice case). In equation (2.1) (and, unless otherwise 
stated, in all subsequent formulae) the trace is taken in X S N ,  the N-times tensor product 
of the one-particle Hilbert space X .  The N-particle Hamiltonian is 
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where m is the particle mass and Ai is the Laplacian acting in the coordinates xi = 
( x j , .  . . , x:) of the ith particle. The potential energy U N  is a r e d  symmetric function 
of its arguments. The only assumption about U N  is that it permits the trace of e-pHN to be 
defined. In equation @.I), 

P+ = N!-' U ( g ) .  
E€sN 

U is the unitary representation of the permutation group SN in ?-I@N; the action of u(g) is 
defined by 

U(g)l$hs...,@N) =l~~-l(l),.'.,~~-l(N)). (2.4) 

It is easy to verify that P+ is self-adjoint a d  €'! = P+. so that P+ is the orthogonal 
projection onto the symmetric subspace of ?-IeN. Substituting equation (2.3) into equation 
(2.1) we obtain a sum over the permutation group and notice that the summand depends 
only on the conjugation class to which g belongs. Indbed, let g and h be conjugate to each 
other, i.e. h = fg  f -' for some f in SN, then 

TrU(h)edHN = TrU(flU(g)U(f)-'e-pHN = TrU(g)edHN. (2.5) 

The first equality holds because U is a representation of SN, the second because of the 
cyclicity of the trace and because U(f) commutes with H N .  In virtue of equation (2.5), 
we can rewrite QV,N as 

Q V , N  = N!-' lIClTrU(g)e-8HN (2.6) 

where the summation runs over the conjugacy classes of SN, IICl is the number of elements 
in IC and g is any element of IC. The class corresponding to the partition [ p ]  (see (1.2)) 
consists of all the permutations of the form 

(2.7) 

K 

g = gtga.. . = (il . . .i,,,)(ip,+l.. . i,,,,,) . . . 
where gt are cyclic permutations of pairwise disjoint subsets 

CI = G I ,  ..., ip,) C 2 = ( i , + l r . . . , i P I + , ) , . . .  (2.8) 

of (1, . . . , N). If nj 2 0 denotes the multiplicity of j in [ p ] ,  the sequence (n j )  satisfies 

N C jnj = N. 
j = l  

The relation between'[p] and ( n j )  is one-to-one, therefore the notation 

(2.10) 

is unambiguous. Now N ! q [ p ]  is the number of elements of the class [ p ] ,  thus equation 
(2.6) reads 

QV.N = c q [ ~ l T r U ( g ) e - ~ ~ ~ .  (2.11) 
[PI 
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This formula was the starting point for Matsubara (1951). Feynman (1953) and Penrose and 
Onsager (1956) in the discussion of the A-transition in liquid helium. Let us remark that 
the canonical pmition function of a system of fermions has the form (2.11) with an extra 
factor ~ [ p ] .  This can be obtained by replacing P+ by 

(2.12) 

in equation (2.1) and by noticing that the signature ~(g)  depends only on the class: each 
j-cycle contributes to it with a factor (-1)j-l. 

In the simplest situation the oneparticle Hilbert space is Lz(V)  (or @ ( V ) ,  lattice case). 
Another example is when the particles have an internal degree of freedom (spin) which may 
take on d = 2s + 1 values. In this case 

X = K 0 @ C d  (2.13) 

where KO denotes the spinless one-particle Hilbert space. The Hamiltonian acts exclusively 
in WO. Therefore the partial trace over (ed)” can be performed: using the notation U0 
and U1 for the representations of SN in and (Cd)”, respectively, we obtain 

Tr U(g)e+’# = TT(cd)eN u i ( g ) T t e ~  uo(g)e-BHN. (2.14) 

The first term on the right-hand side is the character x ~ ( g )  of g in the representation UI. 
With the decomposition (2.7), this factorizes according to the cycles 

(2.15) 

see also equation (A.5). Thus, for 7.t given by equation (2.13), 

QV.N = c d P ‘ p ’ q [ p l  Uo(g)e-PHN = z d k [ p l A I p l .  (2.16) 

The number of cycles k [ p ]  = C n j  includes cycles of length 1. A[p]  is defined by equation 
(2.16). It is this quantity which appeared in equation (1.1). 

In what follows, we will consider SN as a space of events and assign probabilities to 
the permutations. The probability of any g E SN is defined as 

[PI [PI 

P v , ~ ( g )  = (N!Qv,N)- ’  Tr U(g)e-BHN. (2.17) 

To see that this expression is positive write 

TrU(g)e-BHN = S, ... S,ki ... h,v(xi ,... ,xxle-~HN~x,(i), ..., x , ( N ) ) .  (2.18) 

The positivity of the integrand can be proved by showing it at first for the free Hamiltonian 
- CA; and then by passing to HN with the application of the Trotter formula. For - Ai 
the proof is done by direct computation if the domain is rectangular and the boundary 
condition is periodic or Neumann; for Dirichlet boundary condition on arbitrary domain the 
proof involves path integral arguments (Ginibre 1971, Faris and Simon 1975). 
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To simplify the notation, the labels V and N will be dropped whenever this causes 
no confusion. Next, we introduce two sets of random variables: uj(g) is the number of 
j-cycles of g and &(g) is the length of the cycle containing i (1 < i, j < N ) .  ,These are 
related by 

To see this, observe that both sides depend only on the class [ p ]  and both equal 
the e; are equally distributed. therefore 

p:. All 

(2.20) 

has the same mean value as any of the ti: 

~ v . N ( t )  = ~ ~ . N ( t i )  = N-' C j * E v . N ( v j ) .  (2.21) 

Again, the labels V and N will often be dropped hereafter. E(:) will be referred to as the 
'mean cycle length', although the true mean cycle length may be smaller: 

5 2 N / z u j .  (2.22) 

Equation (2.22) is equivalent to the Schwarz inequality 

NZ = ( c j u j ) '  < (E vi)  (E j ' v j )  = N t  uj. (2.23) 

There is a simple relation between the probability distribution of e; and the mean value of 
the u p .  It reads 

n 
N P(& = n)  = -E(u.). (2.24) 

Equation (2.21) could have been obtained from here as well. To get equation (2.24) we 
write 

PO; = n)  = ~ ( e i  = nlu, = j ) P ( u .  = j )  (2.25) 
j 

and notice that 

P(ei = nlu, = j )  = j n / N .  (2.26) 

A similar simple relation can be derived for the probabilitj. that any two different numbers, 
say i and j, fall in the same cycle of g. Let us denote this event by i -g j or more simply 
b y i - j .  

~ ( i  - j) = P ( i  -, jlei = n)p(t;  = n) 

(2.27) 
" 
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To compute the conditional probabilities in equations (2.26) and (2.27) we used the fact 
that PV,,,(g) is a class function (see equation (2.5)), therefore a given number can be found 
with equal probability in any box of a Young diagram. 

If we replace the definition (2.17) by any probability distribution PN on S N  which is 
constant on the conjugacy classes, the probability of a class is 

pN[pl = N ! q [ p l P ~ ( g )  (2.28) 

where g is any element of the class, all E; are equally distributed and the equations (2.21) and 
(2.24-2.27) remain valid. Equation (224) can be generaIized as follows. Let ml , . ,,, mk 
be k different positive integers and 1 < it .c . . . < ik. If N 2 mi and N 2 i k ,  

This relation can be verified by direct computation: 

l"(6il = m l ,  . . . , tik = mt) = P N ( ~  = m i ,  &,,+I = m2, .  . . , 6ml+...+mx-l+~ = mr) 

(2.30) 

Above g; denotes the cyclic permutation (rF1 mj + 1. .  . C; mi),  S(L, L + 1, . . . , N )  is 
the group of all the permutations of the numbers L ,  L + 1,  . . . , N and the notation [ p ] ~  is 
used to indicate that [ p ]  is a partition of M # N .  In the last line g is any element of the 
class [p]N-m,- . . . -mr.  On the other hand, if. as in equation (2.9). nj denotes the multiplicity 
of j in [ p ]  and the m;s are all different, 

Therefore with equation (2.28) 

E N ( u ~ ,  " ' V m , )  = " m ,  . ' . n m k p N [ p l  
[PI:",, > . . . . " m k X  

(2.32) N! - - q[PlN-m,---mkpN(gl " 'gkg) .  
ml ""k [PIN-. '* 

This and equation (2.30) prove equation (2.29). 

order of 1 / N .  This is particularly easy to check fork = 2 
If some of the mis coincide, equation (2.29) still holds true up to a correction of the 

PN(E;  = m, t j  = m) = P N G  = m )  -  ME^ = m, ~j = n) 
n(#ml 
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We used equations (2.24) and (2.29) in the second equality and Cnun = N iS the third 
one. 

It is easy to get an upper bound on the probability (2.29). Since ml, . . . , ink are all 
different, replacing (mi) by (m,(i)), where g E & is arbitrary, results in a disjoint event of 
the same probability. Therefore l j k !  is an upper bound to (2.29). In general, if 11, 12, . . . , l j  
of the numbers mi are respectively the same (Xi=, lm = k),  we get 

I , ! .  . .1 .1  
f " ( S i ,  =mi,. . . , tik = mr) < -. k !  

(2.34) I '  

These probabilities will reappear in section 4 where we attempt (without really succeeding) 
to consmct a probability measure in the limit of the infinite system. 

3. CycIes and pair correlations 

Consider a system of identical particles (bosons or fermions) having a spin of' quantum 
number s: this is the case of equation (2.13) with d = 2s + 1 .  If the spins are coupled to 
a homogeneous external magnetic field, the Hamiltonian reads 

where S; is the z component of the spin of the ith particle. To get the partition function 
Qf,;, one has to replace HN by H,") in equation (2.11). Similarly to equation (2.14), the 
trace over 7 ieN factorizes according to spatial and spin variables and the partial trace over 
the spins is easy to perform: if g is a permutation of the form (2.7X2.8). 

With this equality the partition function reads 

(3.3) 

where ~ [ p ]  = (-l)x(Pj-]) for fermions and 1 for bosons. For h = 0, equations (3.2) and 
(3.3) reduce to equations (2.15) and (2.16), respectively. 

Q(h) V , N  - - C ~ [ ~ l A b l C [ ~ l ( S h / 2 )  
[PI 

Let us compute at first the magnetization. We will need 

, (3.4) 

where 

2s+l  2 s + 1  1 1 
2s 2s 2s 

coth - x - - coth -X &(X) = - 
2s (3.5) 
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is the Brillouin function (Ashcroft and Mermin 1981). With equation (3.4) we find the 
magnetization 

For s = 1/2 fermions this is just equation (1.1). 
The zero-field magnetic susceptibility can be obtained easily. M ( h )  vanishes at h = 0, 

- therefore 

The second derivative of C [ p ]  can be read from 

Combining equarions (3.3), (3.7) and (3.Q 

(3.8) 

(3.9) 

which, in the bosonic case, still reads as 

x(s )  = $ s e  + l)BE(U. (3.10) 

Here E O )  is the mean cycle length (2.21). For spin-; fermions we can recognize equation 
(1.4). 

Let Si denote the spin operator associated with the ith particle. From equation (1.5) 
we get for any i # j 

~ ( s )  = (P/3N)(Sz) = + 1)B + $S(N - l)(SiSj) (3.11) 

because (SiSj) is independent of i, j .  Comparison with equations (3.10) and (2.27) shows 
that for i + j 

(SiSj) = s(s + 1)P(i - j ) .  (3.12) 

Thus, the correlations in a gas of spinning bosons are ferromagnetic and ferromagnetic long- 
range order means that the probability of finding i and j in the same cycle is non-vanishing 
in the thermodynamic limit. 

Equation (3.13) contains no information about the spatial behaviour of the pair 
correlations. This latter can be inferred from the analogue of equation (1.6). For the 
sake of simplicity, we restrict the discussion to the lattice case. The spin operator at the 
site x is defined by 

(3.13) 
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N&) projects the position of particle i to x :  

N ~ ( x )  = I  B .. . B IX)(xl B .  .. 8 r (3.14) 

with Ix)(xl at the ith place and the identity elsewhere. With X I , .  . . , X N  in V and g in SN 
let 

(Xi) = (XI. X 2 , .  . . , X N )  (xg( i ) )  = & ( I ) ,  . . . , X g ( N ) ) .  (3.15) 

The vectors 

I(xi))= 1x1, ... , X # )  (3.16) 

form an orthonormal basis in 12(V)@N.  For any subset C of (I ,  2 , .  . . , N ]  and x in V let 

Any I(xi)) is an eigenvector of Nc(x) with the eigenvalue 

(3.17) 

(3.18) 

For a permutation g let Cj = Cj(g), j = 1,. . . , k = k(g) stand for the (SUPPQI~ of the) 
cycles of g (see equation (2.8)). Now ncJ,(x,)(x) is a joint cycle-site occupation ,number in 
the configuration (xi): it gives the number of particles which are simultaneously at the site 
x and in the cycle Cj. These numbers can be united in a vector 

ng,(.&) = (nc,,(&), . . . ,nck,(&)). (3.19) 

The @-norm of this vector is independent of g, 

N 

Ilns,(x,)(x)ll, = CncJ.cx,)(x) = z ~ i )  
j i=l 

and gives the number of particles at x in the configuration (x i ) .  

Now for x # y in V the spin pair correlation reads 

(3.20) 

(3.21) 

As earlier, g is any element of the class [ p ] ;  r(xJl is short-band for E,, . . .E,,. This 
formula is derived in the appendix. One can immediately see that for bosons the pair 
correlations are strictly positive. Let-us introduce an enlarged event space consisting of the 
couples (g, (xi)) and define the probability of (g, (xi)) as 

(3.22) 
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Then for bosons 

( s (X )s (Y ) )  = S(s + I ) E V . N ( ~ S . ( ~ , ) ( X ) ~ ~ , ( X I ) ( Y ) )  (3.23) 

the expectation value on the right-hand side taken with the probabilities (3.22). Thus, 
the spin pair correlations are proportiqnal to the density-density correlations restricted to 
particles belonging to the same cycle. The latter is also well defined for spinless bosons. 

In some cases summing over all terms of the numerator of (3.21) in which 
ns,(x,)(x)ns,(xi)(y) > 2 yields zero. Then equation (3.21) can be rewritten more simply 
as 

Here E' means that after choosing g in the class [ p ]  the summation is restricted to 
those configurations in which both x and y are singly occupied and the (labels of the) 
corresponding two particles belong to the same cycle of g. The restriction p ,  1 (cf 
equation (1.2)) excludes the class formed by the unit e of SN: this is necessary because the 
inner product in equation (3.21) vanishes for g = e. Equation (3.24) is valid for bosons 
and fermions if the interaction contains a hard-core repulsion: doubly occupied sites being 
excluded, ns,(x,l(x)ng,(x,)(y) = 0 or 1 for the non-vanishing terms. 

Equation (3.24) is also valid for spin-4 fermions independently of the form of the 
interaction. In this case the sum over the classes for fixed (x i )  yields zero if x or y is 
multiply occupied (SiitS 1991, 1992a). This can be understood by noticing that triple and 
higher encounters are illicit and a double occupation at, say, x results in a spin singlet on 
which S ( x )  gives 0. The only difference between equations (1.6) and (3.24) is that in the 
latter we have executed the trivial summation over the permutations within each class. 

Let x - y denote the event that x and y fall in the same cycle, i.e. 

( x  - y} = ((g. (xi)) : xi = x ,  xj = y for some i wS j ] .  (3.25) 

For bosons with a hard-core interaction n,,(&)n,,b,,(y) is the indicator function of x - y,  
therefore from (3.23) or (3.24) we get 

(S(X)S(Y)) = s o  + 1)m - Y). (3.26) 

For the general boson gas, combining equations (U), (3.10) and (3.23) we obtain 

which reduces to 

(3.27) 

(3.28) 

in the case of a hard-core interaction. These formulae hold true whether or not the bosons 
have a spin. Equation (3.27) can also be obtained directly by noticing that 

(3.29) 
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(3.30) 

In contrast to equation (3.28). the latter equation is always true and follows from. equation 
(2.27) with the definition 

P(i  - i) = 1. (3.31) 

One may observe a resemblance between E ( n p , @ ) ( x ) n s , ~ j ) ( y ) )  and the or?e-particle 
reduced density matrix (Penrose and Onsager 1956). although the former is more 
complicated. However, E ( e )  is much easier to compute, at least in the ground state (see 
section 5), than the corresponding sum determining ODLRO ( V A ]  in Penrose and Onsager 
1956). 

4. Events and probabilities in the~infinite system 

When speaking about a percolation transition one makes allusion to a phenomenon occurring 
in an infinite event space. In our case this will be the family of all the bijections from the 
set of positive integers onto itself, which we denote by S,. The permutation group SN can 
be embedded into S, by defining g ( i )  = i for any g in SN and i > N .  In this way 

SI cs,c...cs, . (4.1) 

Clearly, SJ U&SN does not exhaust S,. SJ is the family of all the finite permutations, 
i.e. those having a finite number of non-hivial cycles. Let SO = S, - S,. So contains 
bijections all the cycles of which are finite, an example is g(2i - 1) = 2i, g(2i) = 2i - 1 
for every i > 1. However, 'almost all' elements of SO contain at least one infinite cycle 
because SO is an uncountable set, while the family of all the bijections in which every 
number is in a finite cycle is countable. 

The random variables uj and & introduced in section 2 are naturally defined as functions 
on S, with values in [0, w] and [l, 001, respectively. The level sets 

(4.2) 

are then subsets of S,. For any V and N we redefine PV.N as a probability measure on 
the o-algebra F(A) generated by A = {Bim)i>~.m>l by setting 

P;,,(n;=lEiJ,) = PV.N("J=lBi,mJ n SN) 

SN =np~=,+ ,~ i l .  (4.4) 

(4.3) 

and dropping the prime immediately. Notice that 

We are interested in the limit of (4.3) when N and V tend to infinity and N / V  goes to the 
density p.  By the diagonal process (Rudin 1986) one can'choose a subsequence (V,,  N,) 
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on which these limits simultaneously exist for every k and mi, mz, . . . , mk > 1 finite (thus, 
for a countable number of events): 

P,, (ngI Eip,) = $i~ PVA &,,I. (4.5) 

It is obvious that replacing ij by g(Q) (g E Sm arbitrary) yields the same limit. Now 

(4.6) 

because the inequality holds for finite sums. Therefore one can define the ‘probability of 
cycle percolation’ by 

(4.7) 

That this is indeed a probability, i.e. that P,, extends from (4.5) to a unique probability 
measure on F(d), remains to be proved. Let us briefly resume the problem we encounter 
here. Let I3 denote the class of all finite intersections of elements of d. The numerical 
function Pp is defined on €3 via equation (4.5). Furthermore, let C be the class of all finite 
unions of elements of d and 

2, = ( E  - CIE E B,C E C]. (4.8) 

We call the elements of 2, ‘monomials’. One can check easily that the class of all finite 
unions of monomials is just the ring R(d) generated by d. and the limit P,, of P v n , ~ ,  exists 
on R(d) and defines a content (Bauer 1981): 0 < P < 1, PP(@ = 0 and P , , ( U ~ ~ _ , A i )  = 
Cy=, P,,(Ai) for any finite number of painvise disjomt sets A , ,  . . . , A,, E R(d). If P,, 
is o-additive on R(d), it has a unique extension by continuity and complementation as a 
probability measure on F(d). Proving u-additivity is equivalent to show that if (A i )  is an 
infinite sequence in R(d), A1 3 A2 3 . . . and nEIAi = 0 then Pp(AJ --f 0. If Ai are 
monomials, this can be seen to be true by using the inequalities (2.34). The general case is 
much more complicated and equation (2.34) may not suffice to get a-additivity. 

Notice that the strict inequality in equation (4.6) in itself indicates a phase transition 
independently of whether or not Pp is a probability measure. However, in the absence of 
this result one has to be careful with the interpretation of the limits of probabilities and 
expectation values. 

One may observe that 3(d) is the smallest u-algebra on which cycle percolation can 
be defined. It does not contain the event i - j ,  and some interesting random variables like 
the density of an infinite cycle (see next section) are not 3-measurable. The systematic 
extension of P,, could replace in some respects the C*-algebraic description of infinite Bose 
systems. 

9 .. 

5. Ground-state cycle percolation 

We consider a system of interacting bosons possibly with a d-valued spin (equation (2.13)) 
and assume that the Hamiltonian (2.2) has a unique overall ground state in the spinless 
Hilbert space %:N. As discussed in the introduction, this holds true under very general 



- 
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assumptions on the interaction, domain and boundary condition. Uniqueness proofs are 
based on Perron-Frobenius-type theorems (Krein and Rutman 1962, Glimm and Jiffe 1981) 
and show that the ground-state wavefunction can be chosen to be positive. Uniqueness and 
positivity then implies that it is symmetric under any permutation of the particle positions. 
As we see below, this suffices to prove ground-state cycle percolation. Let EO = Eo(N) 
denote the energy of the ground state. Then 

(5.1) 

This limit gives the number of linearly independent ground states of the Bose gas. Since 
the degeneracy comes exclusively from the spins, we have 

(5.2) 

the number of ways we can assign d spin values to N undistinguishable particles. The 
zero-temperature limit of the probability distribution for the permutations is 

PN(g) = dk's)/N!Q"(d). (5.3) 

In particular, for d = 1 all permutations are equally probable. 
We wish to determine PN(& = j). This goes via the determination of EN(u~) ,  see 

equation (2.24). which can be done exactly. However, we start with an approximate method 
which will be reapplied for the free Bose gas at positive temperatures (Siit6 1993). From 
equations (2.10) and (5.1) for any h we find 

if 
the u j  are independent Poisson-distributed random variables with mean value 

knk = N and 0 otherwise. Let us forget about the constraint (2.9) for a mom,snt. Then 

E(uj) = deAj/j. (5.5) 

Now let us take the constraint into account in average, i.e. choose h so that 

(5.6) 

One can check that E(uj)  determined from (5.5), (5.6) is the most probable value of uj  
obtained as a conditional extremum in a continuous approximation. The Lagrange multiplier 
h can be identified with the chemical potential. In particular, for d = 1 we get h = 0 and 

E(uj)  = l/j.  (5.7) 

It turns out that this is the exact result Let us compute E ~ ( u j )  by fully respecting the 
constraint (2.9). With the notation of equation (2.30) the result is 



4704 A S i t 6  

which is equal to (5.7) for d = 1. For d > 1, equation (5.5) gives a reasonably good 
approximation if j << N .  To see this,,,notice that in this case equation (5.8) yields 

while the solution of equation (5.6) for A is 

A = -a/N (5.10) 

with d - 1 < a < d (SiitB 1993). Let us observe that the ratio of QN-j(d) and QN(d) 
tends to 1 as N increases, therefore 

lim E N ( v ~ )  = d / j .  (5.11) 
N-m 

From equations (2.24) and (5.8) 

pN(h = j )  = (d/N)QN-j(d)/QN(d).  (5.12) 

For d = 1 all the cycle lengths are equally probable. Moreover, 

p(n)  = P,(Bi,) = lim PN(& = n )  = 0 (5.13) 

for any n > 1. Thus the percolation probability 1 -E+, p(n)  = 1. Furthermore, applying 
equation (5.2) and the Pascal triangle identity 

N - m  

we obtain 

(5.14) 

(5.15) 

From equation (5.12) we can infer the limit distribution of the cycle densities. 
0 < a  c b < 1, then using equation (5.14) we find 

PN(aN < ti < b N )  

Let 

d N + d - 1  N + d -  1 - [ a N ]  ) - (N + d -; - [bNI = z (  d - 1  ) - I [ (  d 

+ (1 - a)d - (1 - bf /*((a, b]). (5.16) 
N+CO 

Thus, ,U is an absolutely continuous probability measure on the interval [O, 13, and each 
&/N tends to a random variable q; distributed according to /*. This qi is the density of the 
cycle containing i. Ford = 1, p is the Lebesgue measure'and for general d the probability 
density corresponding to p is d ( l  - x ) ~ - ' .  We can use this density to perform the limit 
N + CO in equation (2.27) at = CO: 

I 1 
lim P N ( ~  - j )  = P ( i  - j l q ;  = x)dp(x) = / x d p ( x )  

(5.17) 
N-rm 0 

1 1 I 
= E(qi )  = d / x(1 - x)d-'dx = __ = - 

0 d + l  2(s+1)' 
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The fact that this is less than 1 and that the percolation probability is 1 implies that the infinite 
cycle is non-unique. However, we can arrive at a much stronger conclusion: Equation 
(5.16) shows that as N increases, any particle belongs, with a probability tending to 1, to a 
macroscopic cycle (the length of which grows proportionally to N). Moreover, macroscopic 
cycles of different densities coexist, and in the infinite system the number of infinite cycles 
of positive density is (countable) infinite. This can be seen more clearly if one computes 
the expected number of cycles with density larger than x .  From (5.2) and (5.8) one obtains 

1 
lim E N ( x  v j ) > d l n - + d ( d - l ) ( l - x )  

X j > x N  N+CC 
(5.18) 

(with equality at d = 1) which diverges as x goes to zero. In this respect, cycle percolation 
resembles bond percolation on a tree where the number of infinite clusters is infinite when 
percolation takes place. 

A physical consequence of the existence of macroscopic cycles is that the ground state 
of a system of spinning bosons is ferromagnetic. From equations (3.10) and (5.14) the 
ground-state magnetic susceptibility is 

N + 2 s + 1  - s ( N f 2 s f l )  - 1 
6 

lim P - l x N  = -S(S + 1) 
B-= 3 2s + 2 

(5.19) 

Comparing with equation (1.5) or (3.11), we see that fors > 
saturate: S,, = N s  while 

the magnetic moment cannot 

< 1  
1 N f 2 s f l  

N s  + 1 
+- (S*) 

Sm,(Sm, + 1) P+m 2 
(5.20) 

if N > 1. The reason is that ground states with spin quantum number less than Ns exist 
and these are all mixed together when the temperature goes to zero in a zero-magnetic field. 

6. Percolation transition in the free Bose gas 

For the free Bose gas 

and the trace in equation (2.16) factorizes according to the cycles: if g has nk cycles of 
length k, 

N 

~ 1 % ~ "  Uo(g)e-pHN = n(tre-flkHo)nk (6.2) 
k=l 

where tI = Tr%. For the probability of a conjugacy class we find 
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if C k n k  = N and zero otherwise. This yields, similarly to equations (5.8) and (5.12), 

d 

k E v , N ( Y )  = - V e - p k H o Q v , N - k / Q v , N  (6.4) 

and 

(6.5) 

For the sake of simplicity, let V be a D-diimensional hypercube of side L and choose 
periodic boundary condition. Then due to the zero eigenvalue of Ho 

d 0 
P V . N ( h  = k )  = - Q v . N - k / Q v , N .  N 

Q V , N  > Q v , N - I .  

On the other hand, by simple computation 

where B = h(2rrp/m)'/2. Thus, 

and therefore 

: limit is h which can be satisfied if D > 2. In eauation (6.8) and below . ,  :n so that 
N / V  goes to p. Notice that the second inequality in (6.9) is the well known condition for 
the Bose-Einstein condensation (see e.g. Huang (1987) in the case d = 1 and Critchley 
and Lewis (1975) for d z 1). So the probability of cycle percolation is positive when the 
condition for the condensation is satisfied. To complete the discussion we should prove the 
converse statement: 

W 

F P 0 ( t i  = k)  = 1 if p B D  < d x k - D / 2  
k=l k=l 

(6.10) 

in particular, that this holds for any finite density and positive temperature in one and 
two dimensions. Suppose one can prove that there exists some function f (k) such that 
Q v , N - k / Q v , N  < f ( k )  independently of V and N ,  and 'E& f ( k )  < 00. Then by the 
dominated convergence theorem (Rudin 1986) 

(6.11) 
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because P v , N ( ~ ~  = k )  = 0 for k > N (cf equation (4.3)) and tre-BkHO/N can be bounded 
by a constant. To get such an f ( k )  observe that, if in (6.10) the inequality holds true, 
there is no condensation and in the thermodynamic limit the canonical and grand-canonical 
ensembles are equivalent (Ruelle 1969, theorem 3.5.8). For fixed p let z(p) < 1 be the 
fugacity corresponding to the density p and define 

ZV,N = Qv,N-I/Qv,N. (6.12) 

By adapting the proof of Van der Linden obtained for classical systems (Van der Linden 
1968). one can show that Z V , N  converges to z(p) which is continuous, increasing and smaller 
than 1 for p < pc(p). This implies that 

lim QV,N-k/Qv,N = Z(P)' (6.13) 

for all k. Here we would need the uniformity of the convergence and, in fact, it is plausible 
to conjecture that for any po < p&) and E z 0 one can find a VO < 00 such that 

V.N-m 

(6.14) 

if V > Vo and 0 
finds 

M / V  < po. If such a result holds h e ,  choosing E = (1 - z(p))/2 one 

k 

Q [(I + z(p))/21k 
Qv.N-k Q v , N - ~  -= 

QV.N Qv,N-;+I 
(6.15) 

for large enough V ,  and the function on the right can play the role of f ( k ) .  However, we 
cannot prove (6.14) and therefore (6.10) rigorously. 

Equations (6.7)-(6.9) remain valid for Dirichlet or Neumann boundary condition. For 
the Dirichlet condition the inequality (6.6) has to be replaced by 

I I D B ~  
QV.N > exp (--) Qv.N-I (6.16) 

because the lowest eigenvalue of Ho'  is positive, but the percolation transition still takes 
place above two dimensions. Further details will be given elsewhere (Siita 1993). 

7. Summary 

In this paper we have dealt with phase transitions in the Bose gas which are entirely due 
to quantum statistics. In a system of bosons classical phase transitions such as ordinary 
condensation or crystallization in which quantum effects play little and mainly inhibiting 
role may occur. The particularity of the quantum statistis is that they create a temperature 
dependent many-body interaction via particle exchange. This leads to the Bose-Einstein 
condensation in the free Bose gas and may lead to Bose-Einstein condensation or to some 
weaker phase transition in an interacting Bose gas. 

In order to see better the exchange in action we have not applied the formalism of the 
second quantization. The projection to the symmetric subspace has been done explicitly by 
a summation over permutations. 
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It is reasonable to speak about a system of interacting particles if the canonical partition 
function cannot be written as a product with each term depending only on the coordinates 
of a single particle. In this sense the ‘free’ Bose gas is, indeed, strongly interacting as one 
can see by combining the formulae (2.16) and (6.2): this, probably the best factorized, form 
is a sum over products on cycles. The exchange which is seen to act among particles which 
are cyclicly permuted is responsible for this. Additional classical interactions superimpose 
on and sometimes compete with the creation of cycles hy exchange: for example, repulsive 
interactions prefer the avoiding trajectories and, hence, have a tendency to shorten the 
cycles. 

It seemed useful to assign probabilities to the different lengths of the cycle containing 
a given particle. This was possible because the terms of the sum over the permutations 
providing the canonical partition function are all positive. The strength of the exchange 
can then be measured by the mean cycle length (MCL), i.e. the expectation value of the 
length of the cycle containing, say, particle No.1. If, for given temperature and density, 
the MCL remains hounded as N increases, the exchange is irrelevant. This is typically the 
case at high temperature or low density. The MCL may increase proportionally to N and 
it does indeed in the ground state of most interacting Bose gas. The divergence of MCL 
may also be slower than N .  If this occurs in a gas of spinning bosons, one encounters 
a Kosterlitz-Thouless-type phase transition (MCL is proportional to the zero-field magnetic 
susceptibility). For spinless bosons we may still apply this appelation hy analogy. 

A sufficiently rapid divergence of the MCL gives rise to cycle percolation. This is 
detected by first taking the N --f DO limit of the probability of each fixed cycle length and 
then summing these limits over all cycle lenghts. Cycle percolation occurs in the ground 
state and yields infinitely many infinite cycles of positive density. It also occurs in the free 
Bose gas as far as the condition for BossEinstein condensation is satisfied. The rate of 
divergence of MCL will he the subject of a forthcoming publication. 

The disintegration of long cycles when the temperature is raised is reminiscent of the 
dissociation of vortex pairs of a Kosterlitz-Thouless phase. One may wonder whether the 
cycles which appear as purely mathematical objects-the vortices of a Kosterli6Thouless 
phase that we recognize due to the slow divergence of MCL and the vortices of a superfluid 
phase are not different faces of one and the same reality. 
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Appendix. Proof of equation (3.21) 

In this formula the denominator is the partition function and ;he numerator is, for example 
in the bosonic case, 

Tr P+e-8HN s(X)s(Y) N!-’  cTre.cv,..(rr,(g)e-sHN TItcdpN Ui(g)S(X)S(y)) 
s 
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Let us first compute the trace over the spin space. Below we use the short-hand TrN for 
this trace. Suppose g = glgz.. . gk as in equation (2.7). p e n  

TTN UI (&?)sisi = 3 TTN U1 (g)sfsT = 3 Tr,v Ui(gl) ' ' . U1 (&)$ST 

Above W, is one of the four operators Sf, S j ,  SSSZ or I according to whether the rth cycle 
contains only i ,  only j ,  both or none, respecively. To prove the last equality, assume at 
tkst that i and j are in different cycles and i is in the rth cycle. Without restricting the 
generality we may also assume that g, = (12.. . pr). Then 

.' J 

Trp, Ul(gr)Wr = (Ug(+ ..., us(p,)lS;Iu~l.... ,up,) 
UI,...*00, 

Second, assume that i and j are in the rth cycle. Now 

Notice that the last equality holds both for s integer and half-integer. Finally, 

TIp, Ul(g,) = xp,(gr) = n(ug(i)lui) = 1 = 2s + 1 = d.  (A.5) 
0, ..... uo, oi=--J 

Equations (A.3)4A.5) prove equation (A.2). We have therefore 

Let C, be the support of g, (equation (2.8)). With the definition (3.17) 

Using (A.8) one can see that the trace in equation (A.6) is the same for all permutations 
within a class: Let h E SN be conjugate to g, i.e. h = fgf-l for some f E S N .  If 
g, = ( i l i z . .  .ipJ then h, = fgrf-' = ( f ( i l ) f ( i Z ) .  . . f ( i p J ) ,  therefore the support of h, 
is 

CJh) = f(C,(g)) = l f ( i ) l i  E C,(g)). . (A.8) 

On the other hand, 

u,(f-')Nfco(x)Nfcc,(Y) = Nc(x)Nc(y)Kl(f-') (A.% 

which can be verified on the vectors I(xi)). With the use of equations (A.7)-(A.9) the result 
follows analogously to equation (2.5). Partial summation in (A.6) over the clas!; [ p ]  yields 
a factor N ! q [ p l .  The last step is to write the trace in the basis I(&)) and appl:( equations 
(2.4) and (3.18). 
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