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Abstract, The canonical partition function of a Bese gas gives rise to a probability distribution
over the permutations of N particles. We study the probability and mean value of the cycle
lengths in the cyclic permutations, their relation to physical quantities like pair correlations, and
their thermodynamic limit. We show that in the ground state of most interacting boson gases
the mean cycle length diverges in the bulk limit and the particles form macroscopic cycles. In
the free Bose gas Bose-Einstein condensation is accompanied by a percolation transition: the
appearance of infinite cycles with non-vanishing probability.

1. Introduction

This paper presents a new approach to phase transitions in bosonic systems. Since this
description emerges somewhat accidentally from a study of the ferromagnetism in the
Hubbard model, it may be interesting to outline the sequence of ideas connecting these
seemingly distant fields.

The magnetization per particle in the Hubbard model (in fact, in any model of spin-%
fermions) can be written (Aizenman and Lieb 1990, Siitd 1991, 1992a) as

12,y ((1/N) & p; tanh § p; Bh)e[pIALP] [T (2 cosh 3 p; Bh)
? Z[p]E[P]A[P] l_[j(Zcosh %Pjﬁh)
Equation (1.1} and formulae {1.4) and (1.6) will be derived in full generality in section 3.

Here we concentrate on the structure of the above expression. The summations run over
the partitions [p] of N, the number of particles,

M(h) = A(1.1)

pzp2-2l pr+pz+---=N, (1.2)

e[pl = (=1DZ@D_ h is the external field, A is the inverse temperature and A{p] (see
equation (2.14)}) is independent of 2. Each partition corresponds to a conjugacy class of the
group Sy of permutations of N elements and fixes the cycle lengths of the permutations
within the class (Ludwig and Falter 1988). One observes that the magnetization is a rational
function of tanh ;-‘Bh, which can be expanded to give

M(hy =Y ay(tanh 1gR)>". (1.3)

n=l

1 Permanent address: Central Research Institute for Physics, Budapest, Hungary.
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The zero-field magnetic susceptibility x reads

-1, _ % _ iE[p](-(l./N) 3 PhelpRMPIALp] 1,
Fix=7=7 311 €LPTZPTALp] i\ (1.4)

where k[p] is the mumber of elements of the partition [p]. This is similar to a mean
value of the cycle lengths: the first average is taken with the weights p;/N, the second is
the thermodynamic average. Let S(x) denote the spin operator at the site x, $%(x)} its z
component and S the operator of the total spin. Then the fluctuation-dissipation formula

Blx = —Z $H(x)§%(y)) = Z(S(x)scy» LN(32> (15)

when compared with (i.4) shows that there is a ferromagnetic long-range order if and
only if the average cycle length grows proportionally to the number of electrons when the
thermodynamic limit is taken.

Spin correlations in a zero field are also locally connected to the cyclic permutations.
For x £ v,

3 Zg;ée G(g)zk(g) EE;:[, ,;;N-)(xg(l)’ vt xg(N)[e-ﬁHN !xla LR xN)
4 2 €@P@FT et s g |eTBEN Xy, L aw)

(Sx)SGN = (1.6)

(cf equation (3.23)). In this formula Hy is the N-particle Hamiltonian and
1, .00, XY = @)

g denotes a permutation of 1,2,..., N, €(g) is the signature and k(g) is the number of
disjoint cycles of g, and e is the unit of Sy. The primed sum goes over {x, ..., xy) such
that x; = x and x; = y for a single pair (/, f), where { and j are in the same cycle of g.
The remarkable fact about this formula is that the numerator is part of the sum constituting
the denominator. Were e(g) not there, we could interpret the ratio as the probability of
finding a configuration (x;) and a permutation g such that x and y are singly occupied and
the two particles beloag to the same cycle of g. Long-range ferromagnetic order would then
mean that spatially extended cycles have a non-vanishing probability. This interpretation
becomes possible if we drop €(g). This makes (1.4) turn into a true mean value and (1.6)
into a true probability. The system is now a boson gas with a two-valued internal degree
of freedom. If we replace the numbers 1/4, 3/4 and 2 respectively by s(s + 1)/3, s(s + 1)
and 25 + 1, we obtain the susceptibility and pair cormrelation of a spin-s boson gas. As a
final step, we divide the two equations by s and then set s = 0. The right-hand side of the
first is still the mean value of the cycle lengths, that of the second is still the probability
quoted above. The obvious physical meaning of the left-hand sides has been lost; however,
they must refer to some thermodynamic properties of the spinless boson gas.

One observes that {{p;)) takes on values between 1 and N. At high temperatures and/or
low densities {{p;)} must be of the order of I as N and V increase. This is at least clear for
the Bose gas with spin, where in the opposite case we wonld get non- or slowly decaying
magnetic correlations at arbitrarily high temperatures or low densities. The boundedness of
{{:}} implies that, in the thermodynamic limit, all the cycles are finite with full probability.
This may not be the case at low temperatures and/or high densities. If a transition occurs it
will be a percolation transition in the sense that infinite cycles appear with positive density.
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This has thermodynamic consequences through the divergence of the response function
{pi)}

The aim of this paper is 10 make these ideas mathematically more precise. In section 2
we define a probability distribution Py y over the symmetric group Sy by using the canonical
partition function of a system of N bosons in a volume V. Associated with the cyclic
permutations in which any permutation g can be decomposed, we introduce two sets of
random variables: vi(g), the number of cycles of length k and &;(g), the length of the cycle
containing the number i. The mean value of the first and the probability distribution of
the second are related by a simple expression. Section 3, supplemented by an appendix,
contains the derivation of the formulae (1.1), (1.4) and (1.6) in full generality for bosons and
fermions. In particular, for the magnetic Bose gas the expectation value Ev y(&;) proves to
be the zero-field susceptibility while in the non-magnetic case it is related to some special
kind of density—density correlation functions. In section 4 we sketch the problem of the
thermodynamic limit of the probability distribution introduced in section 2, and give the
definition of what we call the cycle percolation. Sections 5 and 6 present examples.

In section 5 we study Py y at zero temperature for the interacting Bose gas. We show
that if the overall ground state of the Hamiltonian in the spinless Hilbert space (without Bose
or Fermi statistics) is unique, the corresponding Bose gas exhibits cycle percolation in the
ground state; Ey y(&;) grows proportionally to N and the probability of cycle percolation is
1. This clearly shows the interest in this quantity: being zero at high temperature and 1 in
the ground state, it is a good candidate for an order parameter. Notice, in contradistinction,
that the non-vanishing of the off-diagonal long-range order (ODLRO, Yang 1962) in the
ground state of an interacting Bose gas is apparently no easier to establish than to show
Bose condensation at positive temperatures. As a rare example, recently Penrose {1991)
proved ODLRO for the hard-core Bose gas on the complete graph, a model solved earlier by
Téth (1990).

The prerequisite to ground-state cycle percolation, the uniqueness of the overall ground
state in finite volumes, generally holds true, for example, in two and higher dimensions
for pair interactions which are bounded from below everywhere and from above outside
the origin or a hard core. (For hard-core interactions the density must be smaller than
the close-packing value.) Strictly speaking, this is proved only for the Dirichlet boundary
condition on an arbitrary connected domain. Relevant results are due to Krein and Rutman
(1962, theorem 6.3), Glimm and Jaffe (1981, section 3.3), Faris (1972), Faris and Simon
(1975) and Simon (1979, theorem 21.1). Uniqueness is probably also true for periodic and
Neumann boundary conditions on rectangular domains where the proof is immediate for
non-interacting particles. Natural counterexamples for the uniqueness of the ground state
are provided by one-dimensional systems with hard-core or other pair interactions which
are repulsive and non-integrable at the arigin. Such interactions cut the phase space into
N disconnected parts ((N — 1)1 if the boundary condition is periodic) so that there are N!
linearly independent ground states. In the corresponding Fermi or Bose gas the exchange is
completely prohibited: at any temperature including zero each particle forms a 1-cycle in
itself, the fermion and boson partition functions coincide. So there is no cycle percolation
and, indeed, no Bose condensation in the case of attractive walls (Buffet and Pulé 1983,
de Smedt 1986), although these latter give rise to condensation in the one-dimensional free
Bose gas (Robinson 1976). Notice that the uniqueness condition replaces the absence of
long-range order which was argued to be necessary for ODLRO in the ground state (Penrose
and Onsager 1956).

In section 6 we show that in the free Bose gas Bose-Einstein condensation calls forth the
percolation transition. In this case the probabilities Py, y(& = &) can be obtained explicitly
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and their asymptotic behaviour for different boundary conditions can be studied. This and
other details will be published separately (Siitd 1993).

Let us finish this introduction with several remarks.

A purely qguantum mechanical phase transition in the Bose gas, that is a phase transition
which is entirely due to Bose statistics, is driven by the exchange interaction. Exchange acts
among particles which are cyclicly permuted. If Ey (&) remains finite, the symmetrization
piays a minor role and Boltzmann statistics would give a qualitatively correct description.
It is only when Ey y(&) diverges that Bose statistics becomes relevant. Therefore, the
divergence of Ey y(&) with increasing N and V is probably the most general criterion
of such a phase transition: more general than ODLRO and even more general than cycle
percolation. (Take, for instance, Py y(§ = n) = ay/n* with normalizing factor ay, then
By (&) mayIn N diverges but

oo (=)
lim Pyy(E=n=6/r*) 1/n*=1

2 Jim Pon=m =6/m*) 1/
and, hence, there is no cycle percolation, see section 4.) On the other hand, ODLRO implies
cycle percelation in the free Bose gas and probably also in interacting systems. The
importance of long cycles in the A-transition in liquid helium had already been observed by
Feynman {1953), Penrose and Onsager (1956). If the mean cycle length diverges slowly
(more slowly than N), there may occur a phase transition analogous to the Kosterlitz—
Thouless transition, with or without ODLRO and cycle percolation.

Random walks in connection with path-integral representations of the partition function
are realizations of the cyclic permutations in ‘spacetime’. It is in these terms that Feynman
(1953) described the A-transition in lquid helium. Closely related ideas appear in recent
works, mainly in connection with the quantim Heisenberg model (Conlon and Solovej
1991), in particular in attempts to describe the ground state of the two-dimensional
antiferromagnet (Mielke 1992) or the phase transition in the three-dimensional spin-%
ferromagnet (Té6th 1993). In the set-up of the present paper random walks have no
conceptual importance, their introduction can be avoided.

It is interesting to point out the role of the spins in the above description. While spins
are not thought to modify the nature of the phase transition, their presence is useful, as they
are the most natural markers of the cycles.

A preliminary version of this work was presented at the 18th IUPAP Conference on
Statistical Physics (SiitS 1992b).

2. Probability distribution over permatations

The canonical partition function of a system of N bosons confined in a volume V can be
written as

Qv .y =Tr Pue~Pin, . @.1)

With some abuse of notation, V will be used to denote both the domain and the volume (the
set of sites and their number in the lattice case). In equation (2.1) (and, unless otherwise
stated, in all subsequent formulae) the trace is taken in H®V, the N-times tensor product
of the one-particle Hilbert space . The N-particle Hamiltonian is

n? &
HNz—ﬁ;:Af';'uN(xh-“:xN) (22)
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where m is the particle mass and A; is the Laplacian acting in the coordinates x; =
(x],...,xP) of the ith particle. The potential energy uy is a real symmetric function
of its arguments. The only assumption about uy is that it permits the trace of e=?#~ to be
defined. In equation (2.1),

P =NIT1 3" U(g). (2.3)
gESN

U is the unitary representation of the permutation group Sy in H®Y; the action of U(g) is
defined by

U@t or ¥v) = Wiy -+, Vg e

It is easy to verify that P, is self-adjoint and PZ = P,, so that P, is the orthogonal
projection onto the symmetric subspace of H®N. Substituting equation (2.3) into equation
(2.1) we obtain a sum over the permutation group and notice that the summand depends
only on the conjugation class to which g belongs. Indeed, let g and £ be conjugate to each
other, i.e. f == fgf~' for some f in Sy, then

T U e Py = TTU(HU QU H)Le P = Tr U (g)e PHv, (2.5)

The first equality holds because I/ is a representation of Sy, the second because of the
cyclicity of the trace and because U(f) commutes with Hy. In virtue of equation (2.5),
we can rewrite Qy v as

Qv = NIT Y K| Tr U (g)e P (2.6)
3
where the summation runs over the conjugacy classes of Sy, |K| is the number of elements

in X and g is any element of X.. The class corresponding to the partition [p] (see (1.2))
consists of all the permutations of the form

g=g182...= (.. ip)ipyt1 - dpepy) - @7
where g; are cyclic permutations of pairwise disjoint subsets
Ci={in....i5} Co = {ipttseees ipebpa e 2.8)

of {1,..., N]. If n; > 0 denotes the multiplicity of j in [p], the sequence (n;) satisfies
N
Y inj=N. (29)
j=t :

The relation between [p] and (r;) is one-to-one, therefore the notation
N n l
INY 1
q{pl= (—) — - (2.10)
7 ,1;[! i n;!

is unambiguous. Now N!g[p] is the number of elements of the class [p], thus equation
(2.6) reads

Qv = qlp) TrU(ghe #H. @.11)
]
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This formula was the starting point for Matsubara (1951}, Feynman (1953) and Penrose and
Onsager (1956) in the discussion of the A-transition in liquid helium. Let us remark that
the canonical partition function of 2 sysiem of fermions has the form (2.11) with an extra
factor €[p]. This can be obtained by replacing Py by

P =Nt Z (DU (2.12)
2€5y

in equation (2.1) and by noticing that the signature e(g) depends only on the class: each
j-cycle contributes to it with a factor (—1)/1.

In the simplest situation the one-particle Hilbert space is L2(V) (or £2(V), lattice case).
Another example is when the particles have an internal degree of freedom (spin) which may
take on d = 25 + 1 values. In this case

H=Hy®C? (2.13)

where My denotes the spinless one-particle Hilbert space. The Hamiltonian acts exclusively
in Ho. Therefore the partial trace over (C24)®¥ can be performed: using the notation U
and Uy for the representations of Sy in HS" and (C?)®¥, respectively, we obtain

Tr U (g)e P = Trgayor U1(g) Trygw Uo(g)e™Hn. (2.14)
The first term on the right-hand side is the character yny(g) of g in the representation I/;.

With the decomposition (2.7), this factorizes according to the cycles

k
xw(g) =[] xo(g:) = ¢ (2.15)
=1

see also equation (A.5), Thus, for H given by equation (2.13),

Qv =y d¥lglp] Teyer Up(ge P =3~ dMPI A p]. (2.16)
[P} (£}

The number of cycles k[p] = _ »; includes cycles of length 1. A[p] is defined by equation
(2.16). It is this quantity which appeared in equation (1.1).

In what follows, we will consider Sy as a space of events and assign probabilities to
the permutations. The probability of any g € Sy is defined as

Pyn(g) = (N1Qu ) ' TrU(g)e™PHr, 2.17)

To see that this expression is positive write

Tr U (g)ePE¥ =j;.../;d.r1...de(xl,...,lee'ﬂH”[xgm,...,xg(N)). (2.18)

The positivity of the integrand can be proved by showing it at first for the free Hamiltonian
— 3 A; and then by passing to Hy with the application of the Trotter formula. For — 3 A;
the proof is done by direct computation if the domain is rectangular and the boundary
condition is periodic or Neumann; for Dirichlet boundary condition on arbitrary domain the
proof involves path integral arguments (Ginibre 1971, Faris and Simon 1975).
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To simplify the notation, the Iabels V and N will be dropped whenever this causes
no confusion. Next, we introduce two sets of random variables: v;(g) is the number of
J-cycles of g and &(g) is the length of the cycle containing i (1 < i, j < N). These are
related by

D E= (2.19)

To see this, observe that both sides depend only on the class [p] and both equal 3 p_,?. All
the §; are equally distributed, therefore

E=N"'Yg (2.20)
has the same mean value as any of the &;:
Eyn(E) = Ey (&) =N"1 EJ'ZEV.N(W)- (2.21)

Again, the labels ¥V and N will often be dropped hereafter. E(&) will be referred to as the
‘mean cycle length’, although the true mean cycle Jength may be smaller:

ESN/D v , (2.22)

Equation (2.22) is equivalent to the Schwarz inequality

M=} jvj)z <(Xw) (S w)=NeXw. @2.23)

There is a simple relation between the probability distribution of & and the mean value of
the v;s. It reads

PG5 =n) = %E(v,,). (2.24)

Equation {2.21) could have been obtained from here as well. To get equation (2.24) we
write

PEG=n)=) P =nlvy,=/Pu =] (2.25)
b

and notice that
P& = nlv, = j) = jn/N. (2.26)

A similar simple relation can be derived for the probability that any two different numbers,
say i and j, fall in the same cycle of g. Let us denote this event by { ~, j or more simply
by i~ J.
PG~y =) P~ jl&=rPl=n)
n
(2.27)

h‘.'—l . ____!_ _
= Lo =n = o Ee -,
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To compute the conditional probabilities in equations (2.26) and (2.27) we used the fact
that Py x(g) is a class function (see equation (2.5)), therefore a given number can be found
with equal probability in any box of a Young diagram.

If we replace the definition (2.17) by any probability distribution Py on Sy which is
constant on the conjugacy classes, the probability of a class is

Pylpl = Nlg[plPn(2) (2.28)

where g is any element of the class, all & are equally distributed and the equations (2.21) and
(2.24-2.27) remain valid. Equation (2.24) can be gencralized as follows. Let my, ..., m
be k different positive integers and 1 < fj < -  <i. UN 2 Y myand N 2 i,
mimg - My
P j, = ey 8 = =

N(Sl] ml! Elk mk) N(N_].)"'(N""k"i‘l)

This relation can be verified by direct computation:

EN(Um, -+ Vi)~ (2.29)

PNG::I'] =Miyeees Sik = mk) = PN(EI = Hl, ‘[::ml-l-l =M2 ..., $m1+--x+m1,1+1 = mk)
(N —-i)!
T —— i Py(gr---gr8)
( mp— - =gl geS(nrFr b1, N
=W=0t 3 glplvmem Pr(gr - 818). (2:30)
[P]N-ml-—m—mk

Above g; denotes the cyclic permutation (¥ my +1... 0 my), S(L,L+1,...,N) is
the group of all the permutations of the numbers L, L 41, ..., N and the notation [p]y is
used to indicate that [p] is a partition of M # N. In the last line ¢ is any element of the
class {pn—my——m;- On the other hand, if, as in equation (2.9), n; denotes the multiplicity
of f in {p] and the m;s are all different,

1
1] = = gLP @31)
Therefore with equation (2.28)
EnQm o ¥m) = Y Moo im Palp]
Nt (2.32)
=— Z YT p— ¢ SRR /¥ ) B

LR T P

This and equation (2.30) prove equation (2.29).
If some of the m;s coincide, equation (2.29) still holds true up to a correction of the
order of 1/N. This is particularly easy to check for k£ = 2:

Pv& =m&g=m)y=Py(i=m)— Y Py& =m§ =n)

n{sn)
m m
= EEN(Vm) - mEN(vm H#Zm)ﬂvn)
m m (2.33)
= -A*;EN(Um) - N(N——l)EN(vm (N — mvp))

2

AN TV U S
= N oD EvOm — gy Pr = m.
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We used equations (2.24) and (2.29) in the second equality and } nv, = N in the third
one.
It is easy to get an upper bound on the probability (2.29). Since my,..., my are all
different, replacing (m;) by (m,q)), where g € §; is arbitrary, results in a disjoint event of
the same probability. Therefore 1/k! is an upper bound to (2.29). In general, if [, /s, ..., §;
of the numbers m; are respectively the same (377 _, I, = k), we get

ot

Py, =my, .. 6, =mg) € 0

(2.34)

These probabilities will reappear in section 4 where we attempt (without really succeeding)
to construct a probability measure in the limit of the infinite system.

3. Cycles and pair correlations

Consider a system of identical particles (bosons or fermions} having a spin of guantum
number s: this is the case of equation (2.13) with d = 25 + 1. If the spins are coupled to
a homogeneous external magnetic field, the Hamiltonian reads

HP =Hy—h) S 3.1
where 57 is the z component of the spin of the ith particle. To get the partition function
Qﬁ,"l)N, one has to replace Hy by H ,ﬁf’) in equation (2.11). Similarly to equation (2.14), the

trace over H®V factorizes according to spatial and spin variables and the partial trace over
the spins is easy to perform: if g is a permutation of the form (2.7)-(2.8),

Kp]
Tecoen Ur(g)eP* Z5 = [T Trcayon Urg)) exp (Z BhS} )
i=1

K L'EC_'I
_ 7T S Lopiy _ T SinR@BApi/2
= I:[;e f EI-———————Smh S = CLPNBA/D. (3.2)
With this equality the partition function reads
0¥y =" elplALPICIPI(BR/2) (3.3)

[p]

where e[p] = (—1)Z® 1 for fermions and 1 for bosons. For & = 0, equations (3.2) and
(3.3) reduce to equations (2.15) and (2.16), respectively.
Let us compute at first the magnetization. We will need

dC[plie)

k
= 26C)@) 3 piBs(2sap)) . (G4

j=l
where

25 +1 25+1 | 1
Bi(x) = 2-: coth 52:: x—-z?cothi;x (3.5)




4698 A Siitd

is the Brillouin function (Ashcroft and Mermin 1981). With equation (3.4) we find the
magnetization

1 3l QY _
M) = 58 36m2)

1
fh) > (ﬁ p2:2 (Sﬂkpf))e[p]A[p]C[p](ﬁh/Z).
Qvy ™ 7

(3.6)

For s = 1/2 fermions this is just equation (1.1).
The zero-field magnetic susceptibility can be obtained easily. M (k) vanishes at # = 0,
therefore

_eM| _ 1 2op, o
=Bl BNQvw 042 | :
The second derivative of C{p] can be read from
Clp)(Bh/2) = d¥! (1 +3sGs+1(BRZ Y p?) + Ok, (3.8)
Combining equarions (3.3), (3.7} and (3.8),
1 (/N 3 phelpldiP Al p)
=—s(z+1 3.9
which, in the bosonic case, still reads as
x(s) = ts(s + DBEE). (3.10)

Here E (&) is the mean cycle length (2.21). For spin-% fermions we can recognize equation
(1.4).

Let S; denote the spin operator associated with the ith particle. From equation {1.5)
we get for any § # j

x(s) = (B/3N)(S?) = 3s(s + DB+ 38N — 1)(5;5)) (3.11)

because (5;5;) is independent of i, /. Comparison with equations (3.10) and (2.27) shows
that for i # j - :

(5:8;) =s(s+1)PE ~ ). ' (3.12)

Thus, the correlations in a gas of spinning bosons are ferromagnetic and ferromagnetic long-
range order means that the probability of finding i and j in the same cycle is non-vanishing
in the thermodynamic limit. )

Equation (3.13) contains no information about the spatial behaviour of the pair
correlations. This latter can be inferred from the analogue of equation (1.6). For the
sake of simplicity, we restrict the discussion to the lattice case. The spin operator at the
site x is defined by

N
S(x) = Z S; N; (x). (3.13)
i=l1
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N;(x) projects the position of particle { to x;
Nx)=I1® - Qx}x|@--- @[ (3.149)

with |x){x| at the ith place and the identity elsewhere. With x;,...,xy in V and g in Sy
let

(x;) = (X1, x2, 0.0, XN) (xz)) = Cepqys - - -5 Xgeny)- (3.15)

The vectors

[(x:)) = |x1, ..., XN) (3.16)

form an orthonormal basis in £2(V)®". For any subset C of {1,2,..., N} and x in V let

Ne(x) = Z Ni(x). ' (3.17)

ieC
Any [(x;)} is an eigenvector of Nc(x) with the eigenvalue

ne,e(x) = Y _(xlx). (3.18)

ieC

For a permutation g let C; = Ci(g), j = 1,...,k = k(g) stand for the (support of the)
cyeles of g (see equation (2.8)). Now nc,(xy(x) is a joint cycle-site occupation number in
the configuration (x;): it gives the number of particles which are simultanecusly at the site
x and in the cycle C;. These numbers can be united in a vector

T ) (%) = (e (0 - -+ 5 e (X)) (3.19)

The £!-norm of this vector is independent of g,

g,y ()1, = ch, @) = Z<x|x.-> (320)
and gives the number of particles at x in the configuration (x;).

Now for x # y in V the spin pair correlation reads

2 Elp 12 PIg{p] 3y (e e PP [(x e} )7 0y (X)T2g, () ()
> 1o €LP1AMPIG P T ((epeiy) |eP RN [ (i)

(Sx}S() = s+ 1)
(3.21)

As earlier, g is any element of the class {p]; 3, is short-hand for 3~ ...3 . . This
formula is derived in the appendix. One can immediately see that for bosons the pair
correlations are strictly positive. Let us introduce an enlarged event space consisting of the
couples (g, (x;)) and define the probability of (g, (x;)) as

k(g)

m ((xean) &P (x)). (3.22)

Pyn(g, () =
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Then for bosons
{(8(x}S(y)) = s(s + DEv vy (g, {x)72g, 6y (7)) (3.23)

the expectation value on the right-hand side taken with the probabilities (3.22). Thus,
the spin pair correlations are proportional to the density—density comelations restricted to
particles belonging to the same cycle. The latter is also well defined for spinless bosons.

In some cases summing over all terms of the numerator of (3.21) in which
g, () ()70, (¥) = 2 yields zero. Then equation (3.21) can be rewritten more simply
as

2[p];p,>1 E[P]dHPJQ[p] E;xf) {Cxgen) le=PH¥ | (x;)}
2o LRI ) () le P BV (o))

(S(x)S(M) =s(s+ 1) (3.24)

Here Y’ means that after choosing g in the class [p] the summation is restricted to
those configurations in which both x and y are singly occupied and the (labels of the)
corresponding two particles belong to the same cycle of g. The restriction p; > 1 (cf
equation (1.2)) excludes the class formed by the unit ¢ of Sy: this is necessary because the
inner product in equation {3.21) vanishes for g = ¢. Equation (3.24) is valid for bosons
and fermions if the interaction contains a hard-core repulsion: doubly occupied sites being
excluded, 1 (3 (x)72g ¢x3 (¥) = O or 1 for the non-vanishing terms.

Equation (3.24) is also valid for spin-% fermions independently of the form of the
interaction. In this case the sum over the classes for fixed (x;) vields zero if x or y is
multiply occupied (Siitd 1991, 1992a). This can be understood by noticing that triple and
higher encounters are illicit and a double occupation at, say, x results in a spin singlet on
which S(x) gives 0. The only difference between equations (1.6) and (3.24) is that in the
latter we have executed the trivial summation over the permutations within each class.

Let x ~ v denote the event that x and y fall in the same cycle, i.e.

{x~y}={(g, (x)): xi = x,x; = y for some i ~, j}. (3.25)

For bosons with a hard-core interaction 12g () (x)734,¢x,) (¥) is the indicator function of x ~ y,
therefore from (3.23) or (3.24) we get

(SISO =s(s + DP(x ~y). (3:26)

For the general boson gas, combining equations (1.5), (3.10) and (3.23) we obtain
1
E@®) =5 2 B ) (9Ing,:0 0)) (3.27)
xiy
which reduces to

EE§) = % D_Plx~y) (3.28)
Xy

in the case of a hard-core interaction. These formulae hold true whether or not the bosons
have a spin. Equation (3.27) can also be obtained directly by noticing that

PG~p=3.3 3> Pl (3.29)

xy gi~ (edu=x.x=y
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and

D PG~ j)=NEG®. (330)
i

In contrast to equation (3.28), the latter equation is always true and follows from. equation
(2.27) with the definition

Pi~D=1 (3.31)

One may observe a resemblance between E(7g (x)(x)725 (1)(¥)) and the one-particle
reduced density matrix (Penrose and Onsager 1956), although the former is more
complicated. However, E(£) is much easier to compute, at least in the ground state (see
section 5), than the corresponding sum determining ODLRO (V A, in Penrose and Onsager
1956).

4. Events and probabilities in the infinite system

When speaking about a percolation transition one makes allusion to a phenomenon ocecurring
in an infinite event space. In our case this will be the family of all the bijections from the
set of positive integers onto itself, which we denote by S. The permutation group Sy can
be embedded into S, by defining g(i) =i for any g in Sy and { > N. In this way

S51C85CC 8. “4.1)

Clearly, Sy = U¥_, Sy does not exhaust S,.. Sy is the family of all the finite permutations,
i.e. those having a finite number of non-trivial cycles. Let Sg = Soo — Sp. S contains
bijections all the cycles of which are finite, an example is g(2i — 1) = 2i, g(2) =2i — 1
for every { > 1. However, ‘almost all’ elements of Sy contain at least one infinite cycle
because Sp is an uncountable set, while the family of all the bijections in which every
number is in a finite cycle is countable.

The random variables v; and §; introduced in section 2 are naturaily defined as functions
on S, with values in [0, oc] and [1, oo], respectively. The level sets

By = & =n} nzl
Biy = {& = oo}

(4.2)

are then subsets of S.,. For any V and ¥ we redefine Py » as a probability measure on
the o-algebra F(A4) generated by A = {Bip}iz1,m»1 by setting

Py y (i By} = Py (T Bym, N Sy) 43)
and dropping the prime immediately. Notice that
Sy = n?iN-}-lel' 4.4

‘We are interested in the limit of (4.3} when N and V tend to infinity and N/V goes to the
density p. By the diagonal process (Rudin 1986) one can choose a subseguence (V,, N,)
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on which these limits simultaneously exist for every & and m,, ma, ..., m 2 1 finite (thus,
for a countable number of events):

P01 Bym,) = Lim Py, v, (" Bym)). (45)

It is obvious that replacing ; by g(i;) (g € Se arbitrary) yields the same limit. Now

> P(Bu) <1 4.6)

n=1

because the inequality holds for finite sums. Therefore one can define the ‘probability of
cycle percolation’® by

Py(Bio)=1=)_ Pp(Bin). (4.7

n=1

That this is indeed a probability, i.e. that P, extends from (4.5) to a unique probability
measure on F(.4), remains to be proved. Let us briefly resume the problem we encounter
here. Let B denote the class of all finite intersections of elements of A. The numerical
function P, is defined on B via equation (4.5). Furthermore, let C be the class of all finite
unions of elements of .4 and

D={B-C|BeB,CeC 4.8

We call the elements of D ‘monomials’. One can check easily that the class of ail finite
unions of monomials is just the ring R(A) generated by A, and the limit 2, of Py exists
on R(A) and defines a content (Baver 1981): 0 < P, < 1, P,(@) =0 and P,(U}_,A;) =
Z};l P,(A;) for any finite number of pairwise disjoint sets A;,..., 4, € R(A). If P,
is or-additive on R(A), it has a unique extension by continuity and complementation as a
probability measure on F(A4). Proving o-additivity is equivalent to show that if {4;) is an
infinite sequence in R(A), A1 D Az D -+ and M2, A; = 0 then P,{A)) — 0. If A; are
monomials, this can be seen to be true by using the inequalities (2.34). The general case is
much more complicated and equation (2.34) may not suffice to get o-additivity.

Notice that the strict inequality in equation (4.6) in itself indicates a phase transition
independently of whether or not P, is a probability measure. However, in the absence of
this result one has to be careful with the interpretation of the limits of probabilities and
expectation values.

One may observe that F(A) is the smallest o-algebra on which cycle percolation can
be defined. It does not contain the event i ~ j, and some interesting random variables like
the density of an infinite cycle (see next section) are not F-measurable. The systematic
extension of P, could replace in some respects the C*-algebraic description of infinite Bose
systems.

5. Ground-state cycle percolation

We consider a system of interacting bosons possibly with a d-valued spin (equation (2.13})
and assume that the Hamiltonian (2.2} has a unique overall ground state in the spinless
Hilbert space H$Y. As discussed in the introduction, this holds true under very general
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assumptions on the interaction, domain and boundary condition. Uniqueness proofs are
based on Perron-Frobenius-type theorems (Krein and Rutman 1962, Glimm and Jaffe 1981)
and show that the ground-state wavefunction can be chosen to be positive. Uniqueness and
positivity then implies that it is symmetric under any permutation of the particle positions.
As we see below, this suffices to prove ground-state cycle percolation. Let By = Eg(N)
denote the energy of the ground state. Then

Jim &5 Qy,y = N1” 1de> > d%glp] = Qv (d). €AY
(7]

This limit gives the number of linearly independent ground states of the Bose gas. Since
the degeneracy comes exclusively from the spins, we have

on(d) = (" Y (52)

the number of ways we can assign & spin values to N undistinguishable particles. The
zero-temperature limit of the probability distribution for the permutations is

Py(g) = d*®@/N1Qx(d). (5.3)

In particular, for d = 1 all permutations are equally probable.

We wish to determine Py(& = j). This goes via the determination of Ex(v;), see
equation {2.24), which can be done exactly. However, we start with an approximate method
which will be reapplied for the free Bose gas at positive temperatures (SiitS 1993). From
equations (2.10) and (5.1) for any A we find

nkl

] de}\k
Py((v) = () = e N Qn(d)™ H( ) — (5.4

nk!

if 3 knp = N and 0 otherwise. Let us forget about the constraint (2.9) for a moment. Then
the v; are independent Poisson-distributed random variables with mean value

E(v;) = de¥/j. (5.5)
Now let us take the constraint into account in average, i.e. choose A so that
N N
Y kE(n)=dy ¥ =N. (5.6)
k=1 k=1

One can check that E(v;) determined from (5.5), (5.6) is the most probable value of v;
obtained as a conditional extremum in a continuous approximation. The Lagrange multiplier
A can be identified with the chemical potential. In particular, for d =1 we get A =0 and

E(w}=1/j. _ (5.7)

It turns out that this is the exact result. Let us compute Ey(y;) by fully respecting the
constraint (2.9). With the notation of equation (2.30) the result is

EN(»,)—ZmPN(v,—mJ Yom . d¥qlpl/0n ()

mz] [plity=m

(5.8
=L 3 gLl Quid) = —QN )/ Qu(d)

[Pln-;
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which is equal to (5.7) for d = 1. For d > 1, equation (5.5) gives a reasonably good
approximation if j & N. To see this, notice that in this case equation (5.8) yields

d d-1,
EN(v;) &) }CXP (—""N—j) (5,9)

while the solution of eqguation (5.6) for A is
A=—a/N (5.10)

with d — 1 < a < d (SiitS 1993). Let us observe that the ratic of Qu-;(d) and Qx(d)
tends to 1 as N increases, therefore

Jim Ey(v;) = 4/j. (5.11)
From equations (2.24) and (5.8)
Py (& = j) = (@/N)Qn-j({d)/Qn{d). (5.12)
For d =1 all the cycle lengths are equally probable. Moreover,
p(r) = Pp(Bi) = lim Py(§i=n)=0 (5.13)
N=—ro2

for any n 2> 1. Thus the percolation probability 1 -3,
equation (5.2) and the Pascal triangle identity

= n+k nt+m+1
Z( n )=( n+1 ) (5.14)

k=0

»1 p(n) = 1. Furthermore, applying

we obtain

N+d
d+1"
From equation (5.12) we can infer the limit distribution of the cycle densities. Let
0 € a < b < 1, then using equation (5.14) we find

Ex(&) = (5.15)

Py(aN < & < bN)

_d (N+d=1\"[(N+d~1-1aN]\ _(N+d—~1-[bN]
TN d—1 d d
— (1 —a) — (1 — B = pi(a, BD. (5.16)
N=>00 .
Thus, 4 is an absolutely continuous probability measure on the interval [0, 1], and each
& /N tends to a random variable »; distributed according to tt. This »; is the density of the
cycle containing {. For d = 1,  is the Lebesgue measure and for general d the probability
density corresponding to u is d(1 — x)?~'. We can use this density to perform the limit
N — oc in equation (2.27) at 8 = co:
I 1
fim Puti~ )= [ PG~ Jin=x)dut) = [ xduco)
N=rga i} i}

(5.17)
1

d+1 26+1D

1
= E(ny) = df x(1 —x)%ldx =
o}
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The fact that this is less than 1 and that the percolation probability is 1 implies that the infinite
cycle is non-unique. However, we can arrive at a much stronger conclusion: Equation
(5.16) shows that as N increases, any particle belongs, with a probability tending to 1, to a
macroscopic cycle (the length of which grows proportionally to N). Moreover, macroscopic
cycles of different densities coexist, and in the infinite system the number of infinite cycles
of positive density is (countable) infinite. This can be seen more clearly if one computes
the expected number of cycles with density larger than x. From (5.2} and (5.8) one obtains

Jim EN(Z v;) dln-- +d{d — 1)1 —x) (5.18)
j=xN

{with equality at 4 = 1} which diverges as x goes to zero. In this respect, cycle percolation
resembles bond percolation on a tree where the number of infinite clusters is infinite when
percolation takes place.

A physical consequence of the existence of macroscopic cycles is that the ground state
of a system of spinning bosons is ferromagnetic. From equations (3.10) and (5.14) the
ground-state magnetic susceptibility is

N+2s+1  s(N+25+1)
254+2 6 )

1
lim B~ xy = =s(s -+ 1) (5.19)
f—oo 3

Comparing with equation (1.5) or (3.11), we se¢ that for s > % the magnetic moment cannot
saturate; Spa = Ns while

(8% IN+ 2 +1

1 5.20
Stmax (Smax + 1) l;:’_; 2 Ns=+1 < ( )

if N > 1. The reason is that ground states with spin quantum number less than Ns exist
and these are all mixed together when the temperature goes to Zero in a zero-magnetic field.

6. Percolation {ransition in the free Bose gas

For the free Bose gas

N 2
A
Hy = 2 HY HY = —5- (6.1)

and the trace in equation (2.16) factorizes according to the cycles: if g has n; cycles of
length £,
4 D
Tryev Uo(g)e P = [ [(tre Py (6.2)

k=1

where tr = Try,. For the probability of a conjugacy class we find

nk!

dre B\ 1
Pyl = () = 5 H( =e ) 63)
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if 3" kny, = N and zero otherwise. This yields, similarly to equations (5.8} and (5.12),

Ey y(w) = Etre ~PEH Oy vt/ Oy (6.4)

and

Pyni=k =~ tre"‘s Oy Nt/ Q. (6.5)

For the sake of simplicity, let V be a D-dimensional hypercube of side L and choose
periodic boundary condition. Then due to the zero eigenvalue of H?

Qv.y > Gvn_1. (6.6)

On the other hand, by simple computation

e B [1+ L ]D 6.7)
Bk

where B = h(2nB/m)V/?. Thus,

: d .o
PG =k = lm Puxi=k < z5k™" (6.8)
and therefore
o0 &0
Y Pi=k<1 ifpB°>dy kPP (6.9)
k=1 =

which can be satisfied if D > 2. In equation (6.8) and below the limit is taken so that
N/V goes to p. Notice that the second inequality in (6.9) is the well known condition for
the Bose—Einstein condensation (see e.g. Huang (1987) in the case d = 1 and Critchley
and Lewis (1975) for d > 1). So the probability of cycle percolation is positive when the
condition for the condensation is satisfied. To complete the discussion we should prove the
converse statement:

oc 00
S PBEi=k=1 ifpBP<dy kP’ (6.10)
k=1

k=1

in particular, that this holds for any finite density and positive temperature in one and
two dimensions. Suppose one can prove that there exists some function f(k) such that
Qv.n-i/Qvy £ f(k) independently of V and N, and Zz‘;, f{k) < co. Then by the
dominated convergence theorem (Rudin 1986)

1= lim EPVN@, == lm > Py =Fk)
= ©6.11)
= E v}'é'glm Pywi=k) = Z P& = k)
k=1 "

k=1
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because Py y (& = k) = 0 for k > N (cf equation (4.3)) and tre~F*#°/N can be bounded
by a constant. To get such an f(k) abserve that, if in (6.10) the inequality holds true,
there is no condensation and in the thermodynamic limit the canonical and grand-canonical
ensembles are equivalent (Ruelle 1969, theorem 3.5.8). PFor fixed 8 let z(p) < 1 be the
fugacity corresponding to the density p and define

zv N = Qv n-1/CvN- (6.12)

By adapting the proof of Van der Linden obtained for classical systems (Van der Linden
1968), one can show that zv, y converges to z() which is continuous, increasing and smaller
than 1 for p < p.(B). This implies that

Jim Qu-i/Qu.y = 2o (6.13)

for all £. Here we would need the uniformity of the convergence and, in fact, it is plausible
10 conjecturs that for any pp < p.(8) and & > 0 one can find a ¥y < oo such that

Qvar-1 (ﬂ )
QV M 14
HV>Vyand 0 « M/V < pp. If such a result holds true, choosing ¢ = (1 — z(¢))/2 one
finds

<g (6.14)

Qv 19 Qv-i %
= < {1+ z(en/2] (6.15)
Qvr oy Quyv—is

for large enough V, and the function on the right can play the role of f(k). However, we
cannot prove (6.14) and therefore (6.10) rigorously.

Equations (6.7)~(6.9) remain valid for Dirichlet or Neumann boundary condition. For
the Dirichlet condition the inequality (6.6) has to be replaced by

nDB?
Qv.v > exp (_W) Qv.n-1 (6.16)

because the lowest eigenvalue of H° is positive, but the percolation transition still takes
place above two dimensions. Further details will be given elsewhere (Siitd 1993),

7. Summary

In this paper we have dealt with phase transitions in the Bose gas which are entirely due
to quantum statistics. In a system of bosons classical phase transitions such as ordinary
condensation or crystallization in which quantum effects play little and mainly inhibiting
role may occur. The particularity of the quantum statistics is that they create a temperature-
dependent many-body interaction via particle exchange. This leads to the Bose—Einstein
condensation in the free Bose gas and may lead to Bose—Emstem condensation oOf to some
weaker phase transition in an interacting Bose gas.

In order to see better the exchange in action we have not applied the formalism of the
second quantization. The projection to the symmetric subspace has been done explicitly by
& summation over permutations.
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It is reasonable to speak about a system of interacting particles if the canonical partition
function cannot be written as a product with each term depending only on the coordinates
of a single particle. In this sense the “free” Bose gas is, indeed, strongly interacting as one
can see by combining the formulae (2.16) and (6.2): this, probably the best factorized, form
is a sum over products on cycles. The exchange which is seen to act among particles which
are cyclicly permuted is responsible for this. Additional classical interactions superimpose
on and sometimes compete with the creation of cycles by exchange: for example, repulsive
interactions prefer the avoiding trajectories and, hence, have a tendency to shorten the
cycles.

It seemed useful to assign probabilities to the different lengths of the cycle containing
a given particle. This was possible because the terms of the sum over the permutations
providing the canonical partition function are all positive. The strength of the exchange
can then be measured by the mean cycle length (MCL), i.e. the expectation value of the
length of the cycle containing, say, particle No.1. If, for given temperature and density,
the MCL remains bounded as N increases, the exchange is irrelevant. This is typically the
case at high temperature or low density. The MCL may increase proportionally to N and
it does indeed in the ground state of most interacting Bose gas. The divergence of MCL
may also be slower than N. If this occurs in a gas of spinning bosons, one encounters
a Kosterlitz—Thouless-type phase transition (MCL is proportional to the zerc-field magnetic
susceptibility). For spinless bosons we may still apply this appelation by analogy.

A sufficiently rapid divergence of the MCL gives rise to cycle percolation. This is
detected by first taking the N — oo limit of the probability of each fixed cycle length and
then summing these limits over all cycle lenghts. Cycle percolation occurs in the ground
state and yields infinitely many infinite cycles of positive density. It also occurs in the free
Bose gas as far as the condition for Bose—Einstein condensation is satisfied. The rate of
divergence of MCL will be the subject of a forthcoming publication.

The disintegration of long cycles when the temperature is raised is reminiscent of the
dissociation of vortex pairs of a Kosterlitz—-Thouless phase. One may wonder whether the
cycles which appear as purely mathematical objects—the vortices of a Kosterlitz—Thouless
phase that we recognize due to the slow divergence of McL and the vortices of a superfluid
phase are not different faces of one and the same reality.
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Appendix. Proof of equation (3.21)

In this formula the denominator is the partition function and the numerator is, for example
in the bosonic case,

Tr Pre PV S(x)S(y) = N1 3 Tepqyer (Uo(8)e P Trgaer Un(2)S(x)S(3))
g

= NI S Temyer (Uolg)e ™ Ny (x)N; () Trgepor U(2) 815, (A1)
& bJ
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Let us first compute the trace over the spin space. Below we use the short-hand Try for
this trace. Suppose g = g1g2- -+ £ as in equation (2.7). Then

Try Ur(g)8:8; = 3 Tey Ur(@)SSF =3 Tew Un(gn) - - Ur(g) 753

k . .
= 3] [ Tep, Ui(e W, = {;(” D@+ D" i~ A2)

r=l otherwise.

Above W, is one of the four operators 7, S, §}S7 or I according to whether the rth cycle
contains only {, only j, both or none, respecively. To prove the last equality, assume at
first that i and j are in different cycles and i is in the rth cycle. Without restricting the
generality we may also assume that g, = (12... p,}. Then

Try, Ur(g)We = D {Ggtys s OaplSFIOL, ., 0,

T yuenTpp
s (A3)
= Z O’;H(O'g(nfo’g) = Z o =0
Ty o=—F
Second, assume that { and j are in the rth cycle. Now
&
Try,, Ui(gdWr = Y oo [ [iogmlon) = D % = s(s + 1)(2s + 1)/3. (A4)

Gl yuney Spy F=—8

Notice that the last equality holds both for s integer and half-integer. Finally,

Ty, Ui(g) = Xp (g = Y [Jlownlot =Y. 1=2+1=d. (AS5)

L2 PR Gy F=—s
Equations (A.3)~(A.5) prove equation (A.2). We have therefore

s+ 1) _
N Zg:d"‘g’ Traner Us(g)e P S~ Ni(x)N; (7). (A.6)

i jriregf

Let C, be the support of g- (equation (2.8)). With the definition (3.17),

Tr,, Pre PH¥S(x)8(y) =

k
3 NN () =D Ne (0)Ng, (). (A7)
i, iy f r=1
Using (A.8) one can see that the trace in equation (A.6) is the same for all permutations
within a class: Let & € Sy be conjugate to g, i.e. A = fgf~! for some f € Sy. If

gr = (itiz...ip) then b, = fg, f1 = (FU1) Flia) ... fp)), therefore the support of A,
is

Ch) = fCgN={flli eC(g)}. . (A.8)
On the other hand,
Up(f DINpioy I Nr iy (00 = Ne(®)Ne (3 Uo(f ™) (A9)

which can be verified on the vectors |(x;)). With the use of equations (A.7)—(A.9) the resuit
follows analogously to equation (2.5). Partial summation in (A.6) over the class [p] yields
a factor Nlg[p]. The last step is to write the trace in the basis |(x;)) and apply equations
(2.4) and (3.18).



4710 A Stté

References

Aizenman M and Lieb E 1990 Phys. Rev. Lert. 65 1470

Ashcroft N W and Mermin D 1981 Solid State Physics (Tokyo: Holt-Saunders) p 655

Bauer H 1981 Probability Theory and Elements of Measure Theory (London: Academic) p 10

Buffet E and Pulé J V 1985 J. Stat. Phys. 40 631

Critchley R H and Lewis J T 1975 Commun., Math, Phys. 44 107

Conlon G and Solovej J P 1991 J. Stat. Phys. 64 251

de Smedt P 1986 J. Stat. Phys. 45 201

Faris W G 1972 J. Math, Phys. 13 1285

Farls W G and Simon B 1975 Duke. Math. J. 42 559

Feynman R P 1953 Phys. Rev. 91 1291

Ginibre J 1971 Statistical Mechanics and Quantum Field Theory ed C De Witt and R Stora (London: Gordon and
Breach) p 327

Glimm J and Jaffe A 1981 Quantum Physics (Berlin: Springer) p 49

Huang K 1987 Statistical Mechanics (New York: Wiley) p 286

Krein M G and Rutman M A 19562 Am. Math. Soc. Transl. Series 1 10 199 [Usp. Mat. Nauk. 3 3 (1948)]

Ludwig W and Falter C 1988 Symmetries in Physics (Berlin: Springer) p 41

Matsubara T 1951 Prog. Theor. Phys. Japan 6 714

Mielke A 1992 private communication i

Penrose O 1991 J. Star. Phys. 63 761

Penrose O and Onsager L 1956 Phys. Rev. 104 576

Robinson D W 1976 Commun. Math, Phys. 50 53

Rudin W 1986 Rea! and Complex Analysis (New York: McGraw-Hill) p 246

Ruelle D 1969 Statistical Mechanics (New York: Benjamin) p 66

Simon B 1979 Functional Integration and Quantum Physics (New York: Academic) p 224

Siitd A 1991 Phys. Rev. B 43 8779

— 19922 From Phase Transitions to Chaos ed G Gydrgyl, 1 Kondor, L Sasvdri and T Tél (Singapore: World
Scientific) p 164

—— 19920 18th JUPAP Int. Conf. on Statistical Physics (Berlin} Programme & Abstracts, p 152

——- 1993 to be published

Téth B 1990 /. Stat. Phys. 61 749

—— 1993 Improved lower bound on the thermodynamic pressure of the spin—% Heisenberg ferromagnet Preprint
Mathematical Institute of the Hungarian Academy of Science

Van der Linden J 1968 Physica 38 173

Yang CN 1962 Rev. Mod. Phys. 34 694



